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Abstract - In this paper, we present an online adaptation approach and a long-term learning approach
for socially assistive robotic (SAR) systems that aim to provide customized help protocols through
motivation, encouragements, and companionship to users suffering from physical and/or cognitive
changes related to stroke, aging and Alzheimer’s disease. The role of the robot’s personality in
the hands-off therapy process designed for stroke, focusing on the relationship between the level
of extroversion-introversion of the robot and the user is also investigated. Moreover, a 8-month pilot
study with people suffering from cognitive changes related to aging and/or Alzheimer’s disease depict
a more efficient, natural, and preferred interaction with the robot rather than with the simulated robot.
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I. INTRODUCTION

A recent trend in robotics is to develop a new generation of robots that are capable of moving and acting
in human-centered environments, interacting with people, and participating in our daily lives. This has
introduced the need for developing robotic systems able to learn how to use their bodies to communicate
and to react to their users in a social and engaging way. Social robots that interact with humans have thus
become an important focus of robotics research.

Research into Human-Robot Interaction (HRI) for socially assistive applications is in its infancy. Socially
assistive robotics [4] is an interdisciplinary and increasingly popular research area that brings together
insights from a broad spectrum of fields, including robotics, health, social and cognitive sciences, and
neuroscience, among others.

It is estimated that in 2050 there will be three times more people over the age 85 than there are today
[1]. Most of the ageing population is expected to need physical and/or cognitive assistance. As the elderly
population continues to grow, new research has been dedicated to developing assistive systems aimed at
promoting ageing-in-place, facilitating living independently in one’s own home as long as possible, and
helping caregivers and doctors to provide long-term rehabilitation/cognitive stimulation protocols. The
first efforts towards having socially assistive robotic systems for the elderly have been focused towards
constructing robot-pet companions aimed at reducing stress and depression [5], [12], [7], [6], and [8]. In
addition to the growing elderly population, other large user populations represent ideal beneficiaries of
socially interactive assistive robotics. Those include individuals with physical impairments and those in
rehabilitation therapy, where socially assistive technology can serve to improve not only mobility [13], [2]
[3] but also for outcomes in recovery. Finally, individuals with cognitive disabilities and developmental and
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Fig. 1: Robot test-bed : Bandit II humanoid torso mounted on the Pioneer mobile base

social disorders (e.g., autism [9]) constitute another growing population that could benefit from assistive
robotics in the context of special education, therapy, and training.

In order to be able to aid the target user populations, an effective socially interactive assistive robot
must understand and interact with its environment, exhibit social behavior, and focus its attention and
communication on the user in order to help the user achieve specific goals. Social behavior plays an
important role in the assistance of people with special needs. An adaptive, reliable and user-friendly hands-
off therapist robot can provide an engaging and motivating customized therapy protocol to participants
in laboratory, clinic, and ultimately, home environments, and can establish a very complex and complete
human-robot relationship. Therefore, such robots must be endowed with human-oriented interaction skills
and capabilities to learn from us or to teach us, as well as to communicate with us and understand us.
Hence, the work proposed here will focus on robot behavior adaptation to user’s personality, preferences
and disability level, aiming toward a long-term customized therapy protocol for stroke rehabilitation and
other elderly specific application domains.

This paper presents two learning approaches, one based on on-line adaptation and the other based on
long-term learning, for socially assistive robots designed for helping stroke patients and people suffering of
age-related cognitive impairments (i.e., dementia). The rest of the paper is structured as follows. Section II
illustrates the robotic test-bed. Section III describes the online learning and behavior adaptation approach
and its validation in a rehabilitation-like context and Section IV describes the long-term learning approach
and its validation in a study with patients with dementia. Section V concludes the paper.

II. EXPERIMENTAL PLATFORM

The experimental testbed used was a custom-designed humanoid torso robot mounted on a mobile robot
base (Figure 1). The mobile base was an ActivMedia Pioneer 2DX robot equipped with a speaker, a Sony
Pan-Tilt-Zoom (PTZ) color camera, and a SICK LMS200 eye-safe laser range finder. The anthropomorphic
setup involved a humanoid Bandit II torso, consisting of 22 controllable degrees of freedom, which
included : 6 DOF arms (x2), 1 DOF gripping hands (x2), 2 DOF pan/tilt neck, 2 DOF pan/tilt waist,
1 DOF expressive eyebrows, and a 3 DOF expressive mouth. All actuators were servos allowing for
gradual control of the physical and facial expressions. We are interested in utilizing the humanoid’s
anthropomorphic but not highly realistic appearance as a means of establishing user engagement, and
comparing its impact to our prior work with non-biomimetic robot test-beds [11].

III. STUDY 1
A. Robot Learning and Behavior Adaptation to User Personality and Preferences

The main goal of the first implemented methodology was to develop a robot behavior adaptation system
that allows for dynamically optimizing three main interactional parameters (in our case : interaction
distance/proxemics, speed, and vocal content) so as to adapt to the user’s personality toward improving
the user’s task performance. These parameters defined the behavior (and thus personality) of the ”therapist”
robot. Task performance is measured as the number of exercises performed in a given period of time ; the



learning system changed the robot’s personality, expressed through the robot’s behavior, in an attempt to
maximize the task performance metric.

A learning algorithm based on policy gradient reinforcement learning (PGRL) was developed. The
n-dimensional policy gradient algorithm implemented for this work starts from an initial policy π =
{θ1,θ2, . . . ,θn} (where n = 3 in our case). For each parameter θi we also defined a perturbation step εi
to be used in the adaptation process. The perturbation step defined the amount by which the parameter
may vary to provide a gradual migration towards the local optimum policy. The use of PGRL required
the creation of a reward function to evaluate the behavior of the robot as parameters changed to guide
it toward the optimum policy. The algorithm consisted of the following steps : (a) parameterization of
the behavior initial policy π ; (b) approximation of the gradient of the reward function in the parameter
space ; (c) movement towards a local optimum.

The reward function was monitored to prevent it from falling under a given threshold, which would
indicate that the robot’s behavior at the time did not provide the user with an ideal exercise scenario. This
triggered the activation of the PGRL adaptive algorithm phase to adapt the behavior of the robot to the
continually-changing factors that determined the user’s task performance. More details about this work
can be found in [11].

B. Experimental design for learning in the physical exercise context
We endeavored to develop an experimental design for a study involving stroke patients, and validate it

first with non-patients, in a lab setting, in order to test the adaptation algorithm. In the experimental design,
the participant stands or sits facing the robot. The experimental task is a common object transfer task used
in post-stroke rehabilitation and consists of moving pencils from one bin on the left side of the participant
to another bin on his/her right side. The bin on the right is on an electronic scale in order to measure the
participant’s task performance. The system monitors the number of exercises performed. The participants
are asked to perform the task for a fixed amount of time (15 minutes for healthy adults, 6 minutes for
stroke patients), but they can stop the experiments at any time. At the end of each experiment session, the
experimenter presented a short debriefing. Before starting the experiments, the participants are asked to
complete two questionnaires : (1) a general introductory questionnaire in which personal details such as
gender, age, occupation, and educational background were determined and (2) a personality questionnaire
based on the Eysenck Personality Inventory (EPI) for establishing the user’s personality traits.

The learning algorithm is initialized with parameter values that are in the vicinity of what is thought
to be acceptable for both extroverted and introverted individuals, based on the user-robot personality
matching study described in [10]. The PGRL algorithm evaluates the performance of each policy over a
period of 60 seconds. The reward function, which counts the number of exercises performed by the user
in the past 15 seconds is computed every second and the results over the 60 seconds “steady” period are
averaged to provide the final evaluation for each policy. The threshold for the reward function that triggers
the adaptation phase of the algorithm is adjusted to account for the fatigue incurred by the participant.
The threshold and the time ranges are all customizable parameters.

In the post-experiment survey, the participants are be asked to provide their preferences related to the
therapy styles or robot’s vocal cues, interaction distances, and robot’s speed from the values used in the
experiments.

We designed four different scenarios for extroverted and introverted personality types ; the therapy styles
ranged from coach-like therapy to encouragement-based therapy for extroverted personality types and from
supportive therapy to nurturing therapy for introverted personality types. We chose to use pre-recorded
speech and selected words and phrases for each of these scenarios in concordance with encouragement
language used by professional rehabilitation therapists. The challenge-based therapy script is composed of
assertive language (e.g., “Keep going !” and “You can do more than that !”). Extoversion is also expressed
with higher speech volume and faster speech rate. The aggressiveness of words, volume, and speech
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Fig. 2: The percentage of time that the 12 participants interacted with each of the four therapy styles of
the robot. The crosses represent the participants’ preferences.

rate are adjusted to diminish along with the robot’s movement towards the nurturing therapy style of
the interaction spectrum. In contrast to the challenge-based script, the nurturing therapy script contains
empathetic, gentle, and comforting language (e.g., “I’m glad you are working so well.”, “I’m here for
you.”, “Please continue just like that”, “I hope it’s not too hard”). The speech uses lower volume and
pitch. The transition from one personality-based therapy style to another is done smoothly (see algorithm
above) in order to avoid any jarring influence on the human-robot interaction. We chose a set of three
interaction distances and speeds for each introverted and extroverted personality type.

C. Experimental results for the physical exercise context
We performed the above-described experiment in a lab-like setting, with 12 non-patient, healthy adult

participants (7 male, 5 female). The participants ranged in age between 19 and 35 ; 27% were from a
non-technological field, while 73% worked in a technology-related area.

As shown in Figure 2, the robot adapted to match the preference of the participant in almost every
case. The only exception was the interaction with participant 8. Despite the fact that the time spent in
the preferred training style of that participant was smaller than the time spent in other training styles, the
robot converged to it at the end of the exercise period. This was caused by the fact that the initial state
of the robot was in a training style that was furthest from the participant’s preference.

The pilot results we obtained support our hypothesis that the robot could adapt its behavior to both
introverted and extroverted participants. Further details about this work can be found in [11].

IV. STUDY 2
A. Robot Learning and Behavior Adaptation to User Ability/Performance

The second learning and robot behaviour adaptation methodology was designed for the interaction
between the robot and a user with dementia and/or Alzheimer’s disease, with the main goal of helping
users improve or maintain their cognitive attention through encouragements in a music-based cognitive
stimulation game.

This approach consists of two parts : supervised learning and adaptation. The robot models the level
of game challenge that can be : (a) Difficult : no hints ; (b) Medium : when the song excerpt starts say
“push the button” but do not indicate which button to push ; and (c) Easy : when the song excerpt starts
say which button to push. The supervised learning system learns the Accepted Variation Band (AVB) for
each game level and for each disability bucket (mild, moderate, and severe), as a function of the user’s
task performance. The learning phase is followed by an adaptation phase, where the robot adapts its
behavior so as to minimize the user’s reaction time and maximize the correctness of the user’s answers.
If the user’s task performance is below the Accepted Variation Band, the user is performing better than



during the learning phase. The user is then promoted to the next level of game difficulty (if not already
at the Difficult level). If the user’s task performance is above the Accepted Variation Band, the user is
not performing well enough. The user is then helped by having the game difficulty level is decreased (if
not already at the Easy level).

B. Experimental design for cognition exercise context
The experiment consists of repeated sessions, during which the user and the robot interact in the context

of a cognitive game. The first session is the orientation, in which the participant is ‘introduced’ to the robot.
The robot is brought into the room with the participant, but is not powered on. During this introduction
period, the experimenter or the participant’s nurse/physical/music therapist explains the robot’s behavior,
the overall goals and plans of the study, and what to expect in future sessions. The participant is also
asked about his/her favorite songs from a variety popular tunes from the appropriate time period ; those
songs are later used in the subsequent sessions. At the end of the session, the Standardized Mini-Mental
State Examination (SMMSE) cognitive test is administered so as to determine the participant’s level of
cognitive impairment and the stage of dementia. This test provides information about the cognitive (e.g.,
memory recall) level of impairment of the participant for use in initializing the game challenge level.
The data determine the participant’s initial mental state and level of cognitive impairment, and serve as
a pre-test for subsequent end-of-study comparison with a post-test.

This experiment is designed to improve the participant’s level of attention and consists of a cognitive
game called Song Discovery or Name That Tune. The participant is asked to find the right button for the
song, press it, say the name of the song, and sing along. The criteria for participation in the experiment
(in addition to the Alzheimer’s or dementia diagnosis) include the ability to read large print and to press a
button. The participant sits in front of a vertical experimental board with 5 large buttons (e.g., the Staples
EASY buttons). Four buttons correspond to the different song excerpts (chosen as a function of the user’s
preference) and the last button corresponds to the SILENCE or no song excerpt condition. Under each
button, a label with the name of the song (or SILENCE) is printed. The robot describes to each participant
the goal of the game before each session, based on the following transcript : “We will play a new music
game. In it, we will play a music collection of 4 songs. The songs are separated by silence. You will have
to listen to the music and push the button corresponding to the name of the song being played. Press the
button marked “SILENCE” during the silence period between the songs. The robot will encourage you
to find the correct song.” Each participant is first asked by the music therapist or the robot to read aloud
the titles of the songs and to press a button. Some additional directions are given. The participant is also
directed to press the SILENCE button when there is no music playing. After a review of the directions,
the participant is asked by the robot to begin the music game. The music compilation is composed of
a random set of song excerpts out of the four different songs that form the selection and the silence
condition. The entire music compilation lasts between 10 and 20 minutes, and is based on the user’s level
of cognitive impairment : the larger the impairment, the shorter the session. A song excerpt can be vocal,
instrumental, or both. The order of song excerpts is random. The experiment was repeated once per week
for a period of 8 months in order to capture longer-term effects of the robot therapist. A within-subject
comparison was performed to track any improvement over multiple sessions. No between-subject analysis
was done due to the small sample size and large differences in cognitive ability levels.

C. Experimental results for the cognitive exercise context
The initial pilot experimental group consisted of 9 participants (4 male, 5 female), from our partner

Silverado Senior Living care facility. All the participants were seniors over 70 years old suffering of
cognitive impairment and/or Alzheimer’s disease. The cognitive scores assessed by the SMMSE test were
as follows : 1 mild, 1 moderate, and 7 severe. Due to the total unresponsiveness of 6 of the severely



Fig. 3: Human-robot interacting during the music game : the robot gives hints related to the music game,
the user answers, and the robot congratulates and applauds the correct answer

(a) (b) (c)

Fig. 4: Results : (a) Game Level Adaptation and Evolution Over Time (6 months) for User Id 1 ; (b)
Incorrectness Evolution Over Time (6 months) for User Id 1 ; (c) Reaction Time Evolution Over Time (6
months) for User Id 1

affected participants, only 1 severely cognitively disabled participant was retained for the rest of the study,
resulting in a final participant group composed of 3 participants (all female).

We constructed the training data and built a model for each cognitive disability level and for each game
level. The participants played each game level 10 times (stages) in order to construct a robust training
corpus.

The results obtained over 6 months of robot interaction (excluding the 2 months of learning) suggest that
the elderly people suffering of dementia and/or Alzheimer’s can sustain attention to music across a long
period of time (i.e., on average 20 minutes for mildly impaired participants, 14 minutes for moderately
impaired participants, and 10 minutes for severely impaired participants) of listening activity designed for
the dementia and/or Alzheimer’s population. Figures 4a, 4b, and 4c illustrate the evolution of the game
difficulty over time, as well as response incorrectness and reaction time for user id 1.

Outcomes are quantified by evaluating task performance and time on task. Based on the results we
obtained, it can be concluded that the SAR system was able to adapt the challenge level of the game
it was presenting to the user in order to encourage task improvement and attention training. Figure 4a
shows the evolution in time of the game level for user id 1. The participant started at the easy game level
and remained there for several sessions. The participant then started to perform better and diminished
the reaction time and reduced the number of incorrect answers, which, in turn, resulted in a game level
evolution from the easy level to difficult. Starting from the 22nd trial, the participant consistently remained
at the highest level of difficulty in the game (see Figure 3). Figures 4b and 4c depict the evolution of the
reaction time and the number of incorrect answers. The decrease of those metrics indicates improvement
on the task. Similar improvement was observed for all participants.

The participants recognized the songs and identified the silence periods with the same probability.



Hence, the analysis of the “no answer” situation among our elderly participants provides us with additional
information. From our experiments, we noticed that the average rate of absence of response to silence
was higher than the average rate of absence of response to songs, and that this phenomenon increased
with the severity of the cognitive impairment. Our conjecture is that music stimulates the interest and
responsiveness of the participants. Another interesting observation that deserves more study is the users’
ability to participate simultaneously in different tasks (multitasking) : the participants were able to sing
and push the correct buttons at the same time. This is notable in particular for participants with cognitive
disability, since multitasking requires dividing attention.

In summary, our social robot was able to improve or maintain the cognitive attention of users with
Alzheimer’s Disease in a specific music-based cognitive game. The robot’s capability of adapting its
behavior to the individual user’s level of disability helped to improve the user’s task performance in the
cognitive game over time.

V. CONCLUSIONS

This research has aimed to develop adaptation and learning methods for socially assistive therapist
robots that can provide customized physical rehabilitation and/or cognitive stimulation. We have presented
results from two different adaptation and learning approaches, validated with healthy adults as well as
with elderly users with Alzheimer’s Disease. Our results are encouraging in light of our pursuit toward
creating personalized socially assistive technologies that aim to improve human quality of life.
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